Telegram Group & Telegram Channel
๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


๐Ÿ”ธ Presenter: Amir Kasaei

๐ŸŒ€ Abstract:

This paper explores the use of Chain-of-Thought (CoT) reasoning to improve autoregressive image generation, an area not widely studied. The authors propose three techniques: scaling computation for verification, aligning preferences with Direct Preference Optimization (DPO), and integrating these methods for enhanced performance. They introduce two new reward models, PARM and PARM++, which adaptively assess and correct image generations. Their approach improves the Show-o model, achieving a +24% gain on the GenEval benchmark and surpassing Stable Diffusion 3 by +15%.


๐Ÿ“„ Papers: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


Session Details:
- ๐Ÿ“… Date: Wednesday
- ๐Ÿ•’ Time: 2:15 - 3:15 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! โœŒ๏ธ



tg-me.com/RIMLLab/153
Create:
Last Update:

๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


๐Ÿ”ธ Presenter: Amir Kasaei

๐ŸŒ€ Abstract:

This paper explores the use of Chain-of-Thought (CoT) reasoning to improve autoregressive image generation, an area not widely studied. The authors propose three techniques: scaling computation for verification, aligning preferences with Direct Preference Optimization (DPO), and integrating these methods for enhanced performance. They introduce two new reward models, PARM and PARM++, which adaptively assess and correct image generations. Their approach improves the Show-o model, achieving a +24% gain on the GenEval benchmark and surpassing Stable Diffusion 3 by +15%.


๐Ÿ“„ Papers: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


Session Details:
- ๐Ÿ“… Date: Wednesday
- ๐Ÿ•’ Time: 2:15 - 3:15 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! โœŒ๏ธ

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/153

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Telegram Auto-Delete Messages in Any Chat

Some messages arenโ€™t supposed to last forever. There are some Telegram groups and conversations where itโ€™s best if messages are automatically deleted in a day or a week. Hereโ€™s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This wonโ€™t affect the messages that were sent before enabling the feature.

RIML Lab from ua


Telegram RIML Lab
FROM USA